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Overview

* Refs.: chap. 4 of Acheson, chap, 10 of Cengel, Faber.

* For irrotational flow, V X V = 0, which implies that V=
+ V.

* ¢ is a scalar field called the potential flow function.

* If the fluid is incompressible, then the continuity equation
implies that V-V = 0.

* In this case the bﬁt\en’r’l’ﬂ/func on satisfies the Laplace
equartlon €9Loc ’M‘MJ E N AL

- U= |V = o)

* We can obtain many velocity fields using the techniques
used to solve Laplace’s equation.




Velocity field

Given the flow potential, the velocity field is obtained from its gradient:

Cartesian coordinates,

and in cylindrical coordinates,
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Cartesian Coordinates (x, v, z)
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Cvlindrical Coordinates (r, 6, )
P =x"+y7, 0 =tan™ (—’%)
- A . . O0p. l1dp. Jp.
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Spherical Coordinates (r, 6, @)
P =x"+1"+z%, 8 =cos” (%), Or x=rcosf.p=tan" (A)
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Example (schematic)




Examples (solutions of Laplace’s equation)

Cylinder in free stream

Airfoil in free stream



Examples

Re=10000




Superconductor

T>Te T<Tc

https://en.wikipedia.org/wiki/Meissner_effect



Ex.:

U= ax,

v



Back to Laplace’s equation

For irrotational regions of flow:

In cartesian coordinates

a? Py T
Vi = . '{’+—?=D

dx’ day” dz

In cylindrical coordinates

1 af @ e a*
Vig = (r q&) + ‘i_: + e =
r- ab-

rar\. ar az?

Spherical and mixed coordinates may also be useful.

0

Vi = 0



* The beauty of this is that we have combined three unknown velocity
components (e.g., u, v, and w) into one unknown scalar field ¢,
eliminating two of the equations required for a solution.

* Once we obtain a solution, we can calculate all three components of
the velocity field.

* The Laplace equation is well known since it shows up in several fields
of physics, applied mathematics, and engineering. Various solution
techniques, both analytical and numerical, are available in the
literature.

 Solutions of the Laplace equation are dominated by the geometry
(i.e., boundary conditions).

* The solution is valid for any incompressible fluid, regardless of its
density or its viscosity, in regions of the flow in which the irrotational
approximation is appropriate



Pressure

Of course we still need a dynamical equation to calculate the pressure field.
This will be given by the Euler equation.

If gravity is the only body force, then

L . : : aV P s .
For irrotational regions of flow: p[g +(V-VIV| =—VP + ppg
Or in its integrated form, the Bernoulli equation

_ _ _ P, Vi P, Vi
Steady, incompressible flow: ; TS + 8z, = F_ + T_ T £

Since the flow is irrotational, we can apply Bernoulli to ANY two points in the
flow domain.
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Stream function

* For irrotational flows in 2D, the stream function obeys the Laplace
equation:
Viy = 0.

* In potential 2D flow, both the flow potential and the stream function
are solutions of the Laplace equation.

* Lines of constant flow potential are perpendicular to the streamlines
(check).

* In axisymmetric flows the stream function obeys a linear equation
but that is no longer Laplace’s equation.



Stream function

For incompressible 2D flows:

oY oy Ju Jv
u=—, y=——— —+—=0
dy ox - ox Oy

Important property: { is constant along a streamline.

B _ _ 9y dy Jdydy Jdydy_ . ]
@L'-)/SL‘/' (s v)w_u8x+vay_8y8x é‘xay_o' ¢7—‘7L:O

Dt o4 bi

Generic coordinate system (only in 2D) =/ V = (7 z

Crm Vmé
u=Vn(yk) (e ofe

Lowwéwctt
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Complex potential

w=¢+iy - €

FPp Fy Fy

o | 3y2=0 ¥

= ()
x> 3y?
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Kelvin’s circulation theorem

* An ideal fluid that is vorticity free at a given instant is vorticity free at
all times. o

* Demonstration: see Faber 120-122

* In three dimensions the conservation of vorticity (which corresponds
to the conservation of angular momentum in mechanics) takes a
somewhat subtle form.

* The circulation of a velocity field is defined to be
K{t} = $u{x,t}-dl, ﬂC@

where the line is a closed loop which moves with the fluid.



Circulation and vorticity

* By Stokes’ theorem

Kng ll*tﬂ:/ (Vb{u)*ndS:/
c(t) s T 0

where S(t) is a surface whose edges connect with C(t).
K is zero for all loops if ) is zero in the domain!

Kelvin's theorem asserts that

DK

0.
Dt

Q- ndS,
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Demonstration

The loop moves with the flow and thus

D]/_ @ﬂp _‘(,_/:1’, D(@(’Z)
04 EL/ -

The second term is the relative velocity of two nearby
points on the loop and can be written as (du/al)dl.

DIL?) = fT . I ﬂjﬁ%}: 7 -
(J V?f 40 "@TZ—?
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If the fluid is incompressible, using Euler:

Du
— = —V|{=+
o ofz )

%Dﬁﬂ.ﬂﬁ;—fvgjrg@).@/;

c g _
Sl [q% V(/P +B}S>] s _ o
s
Therefore:
_ j(ul&{o ;ﬂpfé/
[—)£=0 <\7:O)Cfcw)
D —

— w - O
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Superposition

* Since the Laplace equation is a linear homogeneous differential
equation, the linear combination of two or more solutions of the
equation must also be a solution. - A q& + R ¢L

* For example, if ¢, and ¢, are each solutions of the Laplace
equation, then 4 ¢p; + B ¢, are also solutions, where 4 and B are

arbitrary constants. V'gb = AVW!, + szbt

* By extension, you may combine several solutions of the Laplace
equation, and the combination is guaranteed to also be a solution.

= 1 50[./{30 a[l (M:o S5 Ualdd).

._-'—. i ]

&
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Uniform (free) stream

Uniform stream: u

a
”zi_f'(}‘)=0

p=Vx+fly) — ay = —  fily) = constant

Velocity potential function for a uniform stream:

Stream function for a uniform stream:

s=wt (e
=W < Cte

Uniform stream: ¢ = Vrcosfl o = Vrsinf

¢ = Vixcos & + y sin @)

i = Viycos e — xsin )

Uniform stream inclined at angle o {

I
o] ™) I _ |
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[ R [] 1 !
=" v | I &«
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Line source or sink

Let the volume flow rate per unit depth, be the line source

strength, m
@Zwruf mr=ﬁ )MQ:O
L 2arr _O
My~

The components of the velocity are

_% _1w Vi _1_ W _

Line source: i = i, = =
T ar raf 2ur " o8l ar

d
ﬂ—f = -, =0 — J=fll) — =0 =f"(6) = ru, Py

With solution

VIL
f(8y = — 8 + constant
29T

Line source at the origin:

29




Line source or sink at an arbitrary point

LY
F
i r
WL d
8,
\
S I A, . | |l ___
T Ny
b f i
! :
< a— X
V/L W/L . . -
¢=—Inn = In Vix —ayr + (y — br
2ar 2ar
Line source at point {a, b): . .
V/L VIL y—b
¢ = — 60, = — arctan

T 2n 29 r—a
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Superposition of a source and sink of equal
strength

. . ViL ¥y b ¥ P
Line source at (—a, 0): i = Z_H] where #; = arctan
m

xt+a
Similarly for the sink,

—VIL
= 8, where f, = arctan

Line sink at (a, 0): 2
ine sink at (a, 0) ¥, 2w 2 xXr—a

VIL

2

Composite stream function: b= +d,= B, — 8,

. ) . —ViL 2ay
Final result, Cartesian coordinates: f = arctan — : -
2o x+y —a
. - _ —VIL 2ar sin @
Final result, cylindrical coordinates: i = - arctan —————
LT r-—ua
Using
uwtTw
arctan(u) + arctan(v) = arctan 1 (mod m), wv#1. 31
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Line vortex

The radial component of the velocity is zero and

. d 1 d 1 d d r
. Line vortex: ur=_¢=__"£'=g ”E=_£:__“'r"=_
g ar r ab r af ar  2qrr
r where I' = 2mtruyg, is the circulation, around a loop of radius r.
i
d A
) X
Then,
) . . r T
P Line vortex at the origin: db=—0 = ——Inr
2ar 2ar
r r
6y _r,_r ..y-?%
_______ AN b = Py f, = Py arctan ~——
f ! Line vortex at point (a, b): r r
b | ; _ .
L 6 I i i = —gln n = —E]n Vix —ay + (y — bF
= a u X
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Superposition of a line sink and a line vortex
at the origin

The stream function is

VIL r " / f/ 05~
Superposition: ;{:=§B—Elnr :( 0.5 /f;,__.—{}?-._h.ﬁ_ﬁh

N . | — I'r x

Jonde Voclice 1\

Streamlines:

' E‘“a___,n.zﬁ_l/

_2 |
-2 -1 0
X, m
1 VIL d r
Velocity components: M, = F% = P~ u, = ;!" — .
wr r Tr

Note that velocity diverges at the origin, which is a singularity (unphysical).
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Sources and sinks
(Faber 4.4)

* The 1/R potential ¢ = - £ s asolution of Laplace’s equation in

4R
3D .

* It describes isotropic flow with velocity Q/4xR’
* [fQ>0itis asource and itis a sink otherwise. Q is the discharge rate.
* Free stream potential ¢ = Ux;.

* Superposition of the two gives

scos O, (us + uz)'® = ¢ = 8in 6,

) = U -+
4R 4xR-



Sources and sinks

* Or in spherical coordinates,

up = Ucos 6 + =, Uy = — Usin 6.

—
= O
A

(a) (b)

Figure 4.2 Lines of flow past (a) a point source, (b) a point sink. The surface
of revolution X encloses all the fluid coming from, or destined for, the source
or sink respectively.
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Excess pressure and force

The excess pressure vanishes at infinity where the velocity is that of the free stream.
Then Bernoulli gives for the dynamical pressure:

2 ) pUQ cos 6 pO?
¢ = =~ p(U? — up — uz) = — — — —
pr =M k = U) 4R 324°R*
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Total force in the direction x, exerted by this excess of pressure on the fluid inside a
spherical control surface centered on O, of an arbitrary R.

u‘:?. I
(cma* fsinf +
A0t

() cos 6 sin 6 4o = 1

STRU | 3

% pUQ pUQ
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Rate of change of momentum

* The total force is equal to the rate of change of momentum in the x

direction of the fluid, within the sphere:

Y
U F, = | sine g
- lo
V.m dA 2 2
= J [U’-’ cos o + LU T cos 6) O cos 9} 272R? sin 0 dO
0 47R? 167°R?
o
Reynolds transport theorem: By, _ EJ‘ pb dV + J pbV -7t dA
g 77 & i
SNF=—| pVdV + || pV(V-1T) dA

dt fty Jos

\<

B: E/"“
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Rate of change of momentum

/Vﬁ%~>,( Y
J

S — 1evd
J

* There is then an additional force on the fluid in the x direction of
magnitude pUQ

* This has to be exerted by the source (sink) and thus the source (sink)
will experience a reaction force

39



Two equal sources

Velocity at one source, due
to the other:

U= Qldxn(2d)’- (ﬂ -
vu- @ i’

Yt

On the plane bissecting the line joining the two sources the normal component of the
velocity vanishes. The radial component (in the direction of OP), add and are given by:

20 sin 6

- 2/)&«9 '_(,94 = da(d sec 0 ’g ‘a'
°o.d
v

Jj ,)I‘ - JTX‘

?

wtr (d 2 ©) r=oluce



g{A - zﬁf‘\JV‘\
- dTao ‘«ﬂ('(de‘D)

\

=V — 21 ol 1’53 a( Ne.lo 0(9
——0":—2"7@[1%3 A
(=20 9

- Z‘U djz Nen D 0/6
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Excess pressure and force
P P ) s

* Assuming that the excess pressure vanlshes at infinity, where u also
vanishes, the excess pressure at P is (Bernoulli),

_ pQ?sin’ O cos* 6
8 d*

prio} =

* The fluid to the left of the bissecting plane experiences a force due to
this excess pressure, given by

| /JOM/\ 5\/
= 2 a2 L\
Fu: - J de tan ¢ d(d tan 0) = fgg{zj sin” @ cos #df = :
Bulm
= = pUQ.
dfy = Tjmjelh 05 =- o e
AFX— ‘:@P Ma O!A \ /d

2 ?,OL Lerw)ﬁ

Cov ®5 M’ﬁmsz.c. M) =0



Analytical solutions of Laplace’s equation

(S... 4. ()

(i) Two-dimensional circular polar coordinates (r, 8)

In this system Laplace’s equation becomes
P
I | 09| 9@ z%
— —r—=t + — = 0.
) rar[rar} 66” ")( ( ﬁ)%_
~ o\ v v et

Single-valued solutions in which the variables are separated can readily be found.
They are:

¢ = constant,

¢ = ¢y = Inr, (4.22)
¢ > ¢, = r" cos (nb), or ¢ =y, =7r"sin (né) (4.23)

[n = £1, £2, +3 etc.].

Com/t46’u Je Contonng

qc/‘”l " /-/w\k/\

— (;‘D = constant + Au‘}f’u + E(An@n + an“)
M=y
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Ex.:

¢Jrr = r" cos (ﬂg) y — [r_q:, +

d°¢
=10

a0”
——
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(iv) Three-dimensional spherical polar coordinates (R, 0, ¢)

Laplace’s equation in spherical polars has separated solutions which form a
complete set, like the two-dimensional solutions described by (4.22) and (4.23).
We nced not list them fully here, because we shall be concerned only with
problems in which the flow is axially symmetric, i.e. in which the flow potential
does not vary with the azimuthal angle ¢.” In these circumstances Laplace’s
equation simplifies to

P X v
—> o (RE -@) + ,1 ¢ (sm 7 ng) 0,
oR oR sin @ a0 a6

and its separated solutions may be written as
¢ = ¢, = R" P, {cos 0},
¢ = ¢, = R P, {cos O},
[7 =0, +1, +2, +3 etc.].

4):: é +- -{-‘b/k ~

Laplacian in spherical coordinates

_ 18 (a0, 1 oy, _1 &% :
vs= raarr("" 3?‘)_'_?*23111989( ﬁae) 2520 05 xr




The Legendre functions P, {cos 8} may be expanded as polynomials in their
argument, and we shall need the following expressions in particular:

Py{cos 0} = 1, (4.29)

P,{cos 8} = cos 0, (4.30)
l

P,{cos 0} = 3 (3 cos™ 6 — 1). (4.31)

The full functions ¢, and ¢,, are properly called zonal solid harmonics. They are
orthogonal to one another, and all other solutions of Laplace’s equation in three
dimensions which share their symmetry (or asymmetry) may be expressed as
linear combinations of them [cf. (4.24)].

Some of the solutions described by (4.27) and (4.28) are of course trivial. Thus

¢ = 1 for all values of R and 6. As for 55( U Fovo e

¢ = Reos 0=, e l/xf7¢ U@
and W



Potential flow around a sphere

Faber 4.7

A
~N

|

O
M/
|\
S
\%
(7

§
L

Qo

'

QO
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Solutions of the Laplace equation

<iP/\:l\— = ™ Pp,\(éo?@>

(é; = =~ ] (e )

Pg:éoja

General solution
b= & (ALt s Al )

Boundary condition A+ A ¥ V
|> V> oo = 9 = (/w(,aoﬁ

-4 _— eé’r ,4,‘*”-.-,0
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D A (VR
'\
)C{f — (2
T (a0 V(o)
bv——-’
IV
L pRo)
Since the solution for a given set of boundary conditions is unique, only n=1 is
needed. B

dDJ = /]; TE =0 ©
Thus Z/u’q’f

- (D (U/\ t A,‘_
'\Fz
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so that in contact with the sphere

| 9 '
fw = = pUR[1 = 2 sin? 9)-
Pr D P ( 1

Because the excess pressure at R = a i1s completely symmetrical about the
equatorial plane, a sphere which is in uniform motion relative to fluid experiences
no force, apart from its own weight and the hydrostatic upthrust which we have
suppressed. This is an example of d'Alembert’s paradox [87.8],
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Lift & drag forces

* The component of the resultant pressure and shear forces that acts
in the flow direction is called the drag force (or just drag), and the
component that acts normal to the flow direction is called the lift
force (or just lift).

F// - _fo@/%\// = O drag

]LL :ﬁf/)%@/ﬁi:o lift



Solid hemisphere on a flat plate

ﬂp = u,‘)\‘ , PL ’ﬁ}. (\’l -
i F H-2 + Y t5>%e
U Due to high speéd flogﬁ

at the top of the sphere,
we expect a low pressure

; at the top of the sphere.
This pressure results in a
lift force on the
hemsiphere.

Potential

D% —o 2 2(229) ) D, )4

DYAN fen© 0P 36

Same solution and boundary conditions as for a sphere in the previous slides.



Potential flow around a sphere and Magnus
effect

TP

.
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Rotor ship: propulsion by Magnus effect

https://en.m.wikipedia.org/wiki/Rotor_ship
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https://en.m.wikipedia.org/wiki/Rotor_ship

D’Alembert’s paradox: In
irrotational flow , the
aerodynamic drag force
on any body of any shape
immersed

in a uniform stream is
Zero.

“It seems to me that the theory

(potential flow), developed in all
possible rigor, gives, at least in
several cases, a strictly vanishing
resistance, a singular paradox which |
leave to future Geometers |[i.e.
mathematicians - the two terms were
used interchangeably at that time] to
elucidate”

Yyyvyvyy

YYVY VNN

Irrotational flow approximation

Aerodynamic drag = 0
(a)

Real (rotational) flow field

Aerodynamic drag # 0
(b)
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Drag force

Wind tunnel test section

Fﬂ" Pm: Hm

Moving belt Drag balance

In a real flow, the pressure on the back surface of the body is significantly
less than that on the front surface, leading to a nonzero pressure drag on
the body. In addition, the no-slip condition on the body surface leads to a
nonzero viscous drag as well.

Thus, the irrotational flow falls short in its prediction of aerodynamic drag
for two reasons: it predicts no pressure drag and it predicts no viscous

drag.
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attached vortices

ot

A\ Ny T Ll

Az -
(-

fully turbulent wake
(d) Re > 200,000

Drag of a Sphere @

Cd | —— Smooth
g | \2 - == Rough
1.0
.5

5
102 103 10 10 10 10

www.youtube.com/watch?v=fcjaxC-e8oY

low

pressure

"

ball direction > PSR,

Science of Golf: Why Golf Balls Have Dimples
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Doublet: line source and sink close to origin

We have seen before that - 0 y .

. , —VIL Ear sin H :
Compaosife stream function: = o arcta v P o o -
\’\‘\./ !; B
tavneo %{é o

By Taylor expanding the arctan around zero: P

- Qs

Fy - Sy o) (-2) L

+ f(@_) (-2t oo b Ty (u-a)
s ]

( —a(V/L)r sin 8
o— L 4 A Stream function as a — O & — i) - r s:n
wir — a’
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Doublet: line source and sink close to origin

Let a tend to zero at constant doublet strength K, to find

—a(\V/L) sin @ in 8
Doublet along the x-axis: fy = VL) H: =\—K S]:l_
m

Doublet along the x-axis:

+ @ - U v C’) S Streamlines (solid) and equipotential

lines (dashed) for a doublet of strength K
located at the origin in the xy-plane

( 6 ’(. i UV‘ 0 ;of"‘ “) and aligned with the x-axis.

SR>
\__/
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Superposition of a uniform stream and a doublet:
Flow over a circular cylinder

Superposition: =V _rsind — K Si: 6 =0
For convenience we set iy = 0 when r = a
Doublet strength: K=Va
— 1 ]
_,———/’—\7 1T ]
ﬂz 2 :#%\
Alternate form of stream function: g = V_sin B(r — —) ,jf §
] ] /f_ X\X
yE 1
(--2) NG
* =sinf| r* — — \/
' : —
2 ;-HT.‘T'H‘U'.T‘.'.TTTTZ
. , ¢* = V(g*) + 4sin*0 *
Nondimensional streamlines: r¥ =

2 sin B

1 ddr a* difs , a’ d
U =g = V_cos ﬂ'(l — ﬁ)j Uy = == = —V._ sin E(l + .F'E) — wzw_a

OU+V‘A f"'\éﬁ(]\/‘): ¢: CLV\V‘-{« zAM ¢A—-+ Bh. 1‘“ 67




